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ELECTRIFICATION IN TUBE FLOW OF ORGANIC LIQUIDS 

WITH AN ADMIXTURE OF STRONG ELECTROLYTE 

V. N. Pribylov and L. T. Chernyi UDC 532.54:541.13 

The e lec t r i f i ca t ion  of weakly conducting organic  liquids is invest igated within the f r a m e w o r k  of con-  
t inuum mechan ics  [1]. When such liquids (e.g., hydrocarbons)  flow through tubes they acquire  an e lec t r ic  charge 
[2-5]. This leads  to the r i s k  of e lec t r i c  d i scharges  and explosions [4]. The conductivity of the cons idered  
liquids is  due to  a smal l  amount of impur i ty  e lec t ro ly te ,  whose molecules  d issocia te  into pos i t ive  and negative 
ions. According to r ecen t  ideas [2-5], the e lec t r i f ica t ion  of organic liquids is due to e l ec t rochemica l  r e a c -  
t ions occur r ing  on the tube walls,  as  a r e su l t  of which the posi t ive or negat ive ions of the impur i ty  e lec t ro ly te  
a re  conver ted  to neut ra l  molecules .  The p rob lem of e lec t r i f ica t ion  of a liquid in the case  of a comple te ly  d i s -  
soc ia ted  e l ec t ro ly te  was examined in [5], where the effect  of the e lec t r i c  f ield was ignored. The e lec t r i f ica t ion  
of a weakly conducting liquid, in the  case  where the impur i ty  e lec t ro ly te  d i s soc ia tes  s l ight ly and the d i s soc i a -  
t ion can be r ega rded  as an equil ibrium react ion,  was inves t igated in [6]. 

In this p a p e r  we examine the p rob lem of e lec t r i f ica t ion  of an init ial ly unchanged weakly conducting o r -  
ganic l iquid in l a m i n a r  flow in a meta l  tube, where  the impur i ty  e lec t ro ly te  molecules  a re  complete ly  d i s -  
sociated,  and the e lec t r i c  field produced has  a significant effect  on e lec t r i f ica t ion .  The diffusion coefficients  
and cha rge  number s  of the posi t ive and negat ive ions a re  a s sumed  to be equal.  In addition, fo r  defini teness  
we a s sume  that  only negat ive ions a re  involved in the e l ec t rochemica l  reac t ions  on the tube wal ls ,  and the neu-  
t r a l  molecules  f o r m ed  a re  p re sen t  in excess  in compar i son  with ions. The solution obtained can eas i ly  be ex-  
tended to the ca se  of a r b i t r a r y  ion charge  number s  and e l ec t rochemica l  reac t ions  involving ions of both kinds 
on the tube wal ls .  

1. The s y s t e m  of different ia l  equations and boundary conditions at hhe tube ent rance  B and on the wall  S, 
descr ib ing  the e lec t r i f ica t ion  of an organic liquid, has  the f o r m  

div (n+u ::t:: ~ezD n+E --  DVn• = O, 

e div E -- 4nez (n+ - -  n_), rot E ---- 0, n=~ [B ---- n c, (1.1) 

where n~ is the concentrat ion of posi t ive  and negative ions; u, liquid velocity;  e, p ro ton  charge;  z, D, charge  
number  and diffusion coefficient  of the ions; k, Bol tzmann constant;  T, t e m p e r a t u r e  of the liquid, which is a s -  
sumed  to be constant;  E, e lec t r i c  field; e ,  d ie lec t r ic  constant  of the liquid; n c, concentrat ion of posi t ive or  
negat ive  ions at the tube entrance;  nw, equi l ibr ium concentra t ion of negative ions at  the tube wall ,  which is  a t -  
ta ined at the end of an infinitely long tube; K~ constant  of e l ec t rochemica l  neutra l iza t ion of negative ions; v, 
no rma l  to the inside sur face  of the tube.  

The las t  boundary condition (1.1) is fulfil led in the case  where  the neutra l  molecu les  f o rmed  by neu t ra l i za -  
t ion of negative ions on the tube walls  a re  p r e sen t  in the solution in concentrat ion n s, which is much g r e a t e r  
than the ion concentrat ion.  We then have the relat ion 

�9 Moscow. Trans la ted  f r o m  Zhurnal  Pr ikladnoi  Mekhaniki i Tekhnicheskoi  Fiziki ,  NO. 3, pp. 32-37, May-  
June, 1982. Original ar t ic le  submit ted  April  3, 1981. 
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([ ezD.z_~n_E__ DVn_].V)s = Kn_ -- K ~ n ~ K ( n _  -- nw), 

in which K s is the constant of the react ion that is the r eve r se  of ion neutralization.  Since, according to the con- 
dition n s >>n_, even in the ease of complete neutral izat ion of all the negative ions the relative change in con-  
centration a s will be small ,  and it can be neglected.  Hence, the quantity nw ~ K s n s / K  in relat ions (1.1) is 
assumed to be constant.  It is obviously equal to the negat ive- ion concentration at the tube walls in the equilib- 
r ium ease,  when I~1_ =Ksn  s. Thus, according to the last  relat ion in (1.1), there  is a flux of negative ions, 
which dec reases  with increasing distance f rom the tube entrance,  towards the tube wall, where they lose their  
charge.  The neutral  molecules  formed pass  into the solution and are  removed by the flow of liquid, which en-  
sures  the s teady-s ta te  nature of the e lectr i f icat ion of the liquid in the tube, as is actually observed [2-4]. E lec -  
tr if ication mechanisms leading to adsorption of neutral  molecules  on the tube walls will not, as we know [2-3], 
cause s teady-s ta te  electr if icat ion.  In a motionless liquid in a metal  container an e lec t rochemical  react ion in- 
volving negative ions will also occur  on the walls ,  of course .  In this case,  however,  the ions will eventually 
acquire an equilibrium distribution, when their  flux to the walls becomes zero .  Immediately next to the wa l l s  
n_ = Ksns /K ,  and at a distance f rom the walls much g r ea t e r  than the Debye radius Pd of the liquid, we have 
n = n ~ ~he e lec t r ic  field and charge density will be nonzero pract ica l ly  only at the walls of the container,  in 
a layer  of thickness ~Pd" If K >> K s, then n s >> n_. When the liquid f rom a container with charac te r i s t i c  
dimension much g r ea t e r  than Pd is pumped through a nar row tube, the ion concentration at the tube entrance 
can be regarded  as equal to the ion concentrat ion in the bulk of the liquid inthe container  (nO). As a result ,  the 
negative ions lose the i r  charge on the tube walls.  With increase  in distance f rom the tube entrance the i r  con- 
centration at the walls will tend to equilibrium, i.e., to K s n s / K  =- n w, and the electr i f icat ion of the liquid will 
decrease .  

F r o m  experimental  data [2-4] for  the electr i f icat ion and conductivity of organic liquids we can est imate  
the maximum relat ive change in the concentrat ion of ions involved in the react ion on the wall. In many cases  it 
is much less than unity. The value of no~ contained in the boundary condition on the tube wall will differ little 
f rom the value of n o 

nit, ~ r ~  0 I-7-1>>, 
and in the considered problem there appears a small  p a r a m e t e r  

n w - -  n o K ~  8 

~ - -  no - -  K n  o +-1, I~[<<t, 

determined by the constants Ks, ns, K, and n ~ which charac ter ize  the physicochemical  p roper t i es  of the liquid 
undergoing electr if icat ion.  

The effect of e lectr i f icat ion of organic liquids on their  flow can usually be neglected, and the c h a r a c t e r -  
istic settling length of the Poiseuil le distr ibution of the l iquid velocity in the tube is much sma l l e r  than the 
charac te r i s t i c  length L 0 of the initial par t  of the tube, where the electr if icat ion of the liquid mainly occurs .  
Hence, for  the liquid velocity u we can use the Poiseullle formula.  

We introduce a cylindrical  coordinate sys t em (x, r, 0), whose x axis coincides with the tube axis. Con- 
vet t ing to dimensionless variables  in (1.1) 

�9 * =  r*=j, u,=-" "--* 
U 0 '  - -  k T  ~ '  ~ ~ -  n 0~ 

express ing the quantities n ~ ,  E* in t e rms  of the smal l  pa r ame te r  y ( n *  = 1 + yn~, E * = TE l) and l inearizing 
Eq. (1.1), we find 

Pe (t -- r .2) ~ + div* (:i: E 1 --  V*n~-) ----- 0, 

1 _ n '_) ,  r o t *  E1 I. 0 ,  div* E 1 = 2 De" (n+ = 0, = 

(n+) ]Is = 0, [--  Er ~ --  (n[) ' ]  Is = K* (n 1_ -~ 1)Is, 

uOR K . . . ~ _  ' t r ekT 
Pe = --D--' = De = ~- 8~een0 , 
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w h e r e  u ~ is  the  ve loc i ty  of the  l iquid on the  tube  axis ;  Pe  is  the P6c l e t  n u m b e r ;  De is the  d i m e n s i o n l e s s  Debye  
r ad iu s  of the liquid; the  dash  denotes  the d e r i v a t i v e  wi th  r e s p e c t  to r * .  

In t roducing  the new v a r i a b l e s  q* = n ~ -  n~_, n* = nl+ + nl_l we f ina l ly  obtain  the  fol lowing s y s t e m  of e q u a -  
t ions  and boundary  condit ions:  

Po (i  - -  r*2) Tx*~ - -  A'q* + -~e~ = 0 , q *  

Pe (t - -  r*~) on* A ' n * -  0, div* E a q* 
= 2--~e~ ' (1.2) 

[ ' "11 q* I,,*=o = o,  n* Ix*=o = 0, E~ ---~- (n*' + q ) = 0, r $ ~ l  

[- (." -,")] I:.~ (- ' -  ,', + ,] 
The e l e c t r i c  c h a r g e  dens i ty  q is  connec ted  with i ts  d i m e n s i o n l e s s  va lue  q* by  the equal i ty  q = ezTq*n~ 

The quant i ty  L 0 in t roduced  above is  obv ious ly  the s a m e  as  the c h a r a c t e r i s t i c  se t t l ing  length f o r  e q u i l i b r i u m  
ion concen t r a t i ons  in the  tube  (when x >> L 0 the ion concen t r a t i on  can  be r e g a r d e d  as independent  of x).  Since 
u sua l l y  L~ >> ra in( l ,  De),  then  in the  o p e r a t o r s  A* ,  div* the  d e r i v a t i v e s  wi th  r e s p e c t  to x*  a r e  s m a l l  in c o m -  
p a r i s o n  wi th  the d e r i v a t i v e s  wi th  r e s p e c t  to  r * ,  and they  can be neg lec t ed .  The e l e c t r i c  c u r r e n t  g f lowing 
th rough  the tulle c r o s s  sec t ion  and i ts  d i m e n s i o n l e s s  va lue  3"  a r e  ca l cu l a t ed  f r o m  the f o r m u l a s  

J = 2~ ~ qu~rdr, J* = J/(ez?u~ ~ = 2~ .t" q* (t - -  r *~) r'dr*. 
0 0 

(i .3) 

2. T o  so lve  the  p r o b l e m  (1.2) we u s e  the  Lap lace  t r a n s f o r m .  Conver t ing  f r o m  the func t ions  q* (x*,  r * ) ,  
n* (x*,  r * ) ,  Elr(X~, r * )  to  t h e i r  i m a g e s  Q(p, r * ) ,  N(p, r * ) ,  :if(p, r * )  (p is  a c o m p l e x  v a r i a b l e )  we f ind tha t  the  
l a t t e r  s a t i s f y  the  fo l lowing s y s t e m  of equa t ions  and bounda ry  condit ions:  

Q" -t- O'/r* - [p Pe (t  - r *~) + De- ' ]  Q - 0, (2.1) 
N" + N;/r* + p P e ( t  - -  r *~) N = 0, (r*Y)'/r* = Q/2De~; 

Y - -  (N'-}-Q') ---0, Y-t-  (N ' - -Q ' )  - } - . ~ ( N - - Q )  r*=x="  " 
r * = l  p 

(2.2) 

The subs t i tu t ion  Z = ~ r *  2, ~ = (_p pc ) l /2 ,  Q (r*) = V(Z) exp(- Z/2) b r i n g s  the f i r s t  equat ion  of (2.1) to  the  f o r m  

ZV" ~ ( |  - -  Z)V' --  aV = 0, a = i/2 - -  (t/4)(~ - -  ~-lDe-~). (2.3) 

The equat ion  i s  a conf luent  h y p e r g e o m e t r i e  equa t ion  [7]. The r e g u l a r  z e r o  so lu t ion  of th is  equat ion  is  a 
K u m m e r  funct ion [7] 

Thus ,  f o r  Q we have  

a Z a ( a + t )  g 2 

O(a' t' Z) = t  + T ~ " { -  t.(iATt) - - 21 ~" " ' "  

Q = A(p)G~ (p, r*), Ga ~ O ( a ,  t ,  a r  .2) exp (--ar*V2), 

and iu a s i m i l a r  way  we find the func t ions  N(p, r*), Y(p, r*) 

N -~ B(p)Gb (p, r*), Gb -~- ~P(b, i ,  ar *~) exp ( - -ar*2/2) ,  

H 1 1 a 
y = 2--~e~A(p)H (p, r*), - '~ -~  S Ga(p, r*)r*dr*, b~-~--- f i - .  

O 

The coef f ic ien t s  A and B a r e  found f r o m  the boundary  condi t ions  (2.2): 

A = 2p  - 1  [ G / J F  l l.*=~, B -= - -  2p  - ~  [ (~',, - -  H/De~)/F] ]~-*=1, 

F [(GaGb)' + 2GaGb/K -- (H/De')(G~ + 2GJK*)] [~*=i. 
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The function Q(p) has poles at the point p = 0 and points pk ~ 0 (k = 1, 2, 3 . . . .  ), which are  zeros  of the 
function F(p); 0 > Re (pi) > Re (P2) > . . . .  Using the expansion theorem [8] and calculating the residues of 
the function Q(p) exp (px*), we obtain the following express ion for  the e lec t r ic  charge density q 

q='ieznOq* =~eznOila(i/Oe)+8De~I,(i/De) + --t)l I i m a ~ [ ( P - - P k )  Q(P' r*)exp(px*)] , 

where I 0, 12 are modified Bessel  functions of zero  and second order ;  n k is the o rder  of the pole Pk" 

There  are s imi la r  expressions for  the ~nc t ions  n*(x*,  r*) ,  Elr(X*, r*) .  

3. We introduce the function 

(2 .4 )  

If x* >> kPe  all the te rms  of the sum in relat ion (2.4) are  small .  Hence, when x* >> ?~Pe the e lectr ic  
charge density in the tube depends weakly on x * and electr i f icat ion pract ical ly  c ea se s .  The charac te r i s t ic  
e lectr i f icat ion length introduced above can then be determined by the equality L 0 = ?~Pe R. 

Figure 1 shows a plot of the dimensionless  electr i f icat ion length (divided by the P~clet diffusion number) 
against the p a r a m e t e r  De 2. It is apparent that an increase  in Debye radius initially leads to a great  increase 
in the charac te r i s t i c  e lectr i f icat ion length. With fur ther  increase  in Debye radius the charac te r i s t i c  e lec t r i f ica-  
tion length changes by a smal l  amount. A plot of L ~ / P e  against the dimensionless rate of the chemical  r e a c -  
tion on the wall is shown in Fig.  2 (in Figs.  2-4 De = 1). The rate of the react ion on the wall has a grea t  effect 
on the charac te r i s t i c  e lectr i f icat ion length of the liquid. Reduction of the ra te  of the e lec t rochemical  react ion 
on the wall leads to an increase  in the charac te r i s t i c  electr i f icat ion length of the liquid. Figure 3 shows a 
plot of the dimemsionless e lec t r ic  cur rent  J* ,  calculated f rom the formula  (1.3), against the dimensionless 
chmrmel length x* (in the calculations we took Pe = 104). An increase  in tube length leads initially to a g rea t  
increase  in the e lectr ic  current ,  and then it becomes insignificant (after the tube length becomes much g rea t e r  
than the e lec t r ic  cha rge  relaxation length). For  curves 1, 2 we have K* = 1, ~,  respect ively.  When x* -~ 
the e lec t r ic  cur ren t  tends to a maximum value 

Jmax = " 8~'yezn~ De212 (i/De) 
X o (i/De) + 8I)eSIa (i/De)" 

Plots of the dimensionless e lec t r ic  charge density q* against the dimensionless tube radius r* for  different 
values of the dimensionless length x* are shown in Fig. 4. For  curves 1 and 2 we have x* = 1000 and ~ (K* = 
~), respect ively .  The e lectr ic  charge density has a minimum value on the tube axis and a maximum value on 
the wall. Near  the tube axis the variat ion of the e lec t r ic  charge density is s lower than near  the tube wall. 
With increase  in distance f rom the tube entrance to the considered c ross  sect ion the profile of the e lectr ic  
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charge density distr ibution changes and tends to the prof i le  for  an infinitely long tube, shown by curve 2 in 
Fig.  4. This curve is given by the f i r s t  t e r m  on the r ight -hand side of express ion  (2.4) fo r  q. 

We thank V. V. Gogosov and V. V. Tolmachev  fo r  useful d iscuss ion of the work. 
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ELECTRIFICATION OF A METAL BODY IN AN, AEROSOL FLOW 

WITH A SOLID DISPERSE PHASE IN THE PRESENCE OF A CORONA 

DISCHARGE FROM THE BODY 

V .  L .  K h o l o p o v  a n d  L .  T .  C h e r n y i  UDC 532.5:537 

The e lec t r i f ica t ion  of a me ta l  body in a flow of uncharged monodisperse  aeroso l  with a solid d i spe r se  
phase  is invest igated within the f r a m e w o r k  of continuum mechanics  [1]. The corona  d ischarge  f r o m  the body 
is taken into account.  We consider  cases  of wel l -conduct ing aeroso l  pa r t i c l e s ,  fo r  which the e lec t r i c  charge 
re laxat ion t ime is much  g r e a t e r  than the t ime of impac t  with the body. A closed s y s t e m  of equations and bound- 
a ry  conditions descr ib ing the e lec t r i f ica t ion  of the body is obtained. We de te rmine  the main  d imensionless  
p a r a m e t e r s  affecting the e lec t r i f ica t ion  of the body. We obtain expres s ions  for  the e lec t r i f ica t ion  cur ren t ,  the 
m a x i m u m  corona  cur ren t ,  the floating charge  and potential  of the body, the m a x i m u m  corona  overvol tage ,  and 
the cha rac t e r i s t i c  t ime  fo r  es tab l i shment  of the floating charge  on the body. The main d imens ion less  c h a r a c -  
t e r i s t i c s  of e lec t r i f ica t ion  of a sphere  with a s p a r k  gap are  calculated.  

1. We cons ider  a meta l  body with a s p a r k  gap in a s teady flow of uncharged monodisperse  aeroso l  with 
a solid d i spe r se  phase .  As is known [2], the ae roso l  pa r t i c l e s  a re  charged  by collisions with the body. The 
body consequently acqui res  an e lec t r ic  charge  that  is opposite in sign to the par t i c le  charge .  This effect  is ob-  
s e rved  when bodies  move through clouds, prec ip i ta t ion ,  and a dust - laden a tmosphere  [3]. It can be used  in e l ec -  

t r i c  p robes  designed for  measur ing  the p a r a m e t e r s  of ae roso l  flows [4]. 

Using the m e t h a i s  of continuum mechanics  [1, 5] we will cons ider  the averaged  motion of a monodisperse  
aeroso l  flow pas t  a body as the in te rpenet ra t ing  motion of two continuous media  - gas  and aerosol  pa r t i c l e s .  
We a s sume  that  the concentra t ion of the l a t t e r  is fa i r ly  low and the i r  effect  on the gas  motion can be neglected.  
Then, in the invest igat ion of the e lec t r i f ica t ion  of bodies the motion of the gas can be regarded  as p r e sc r ibed .  
The ave raged  motion of the ae roso l  pa r t i c l e s  before  coll is ion with the body is desc r ibed  by the following equa-  
tions: 
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